Detectron2 FPN + PointRend Model for amazing Satellite Image Segmentation

8 min readJul 6, 2021

High Accuracy Satellite Image Segmentation

Satellite image segmentation has been in practice for the past few years, it has a wide range of real-world applications like monitoring deforestation, urbanization, traffic, identification of natural resources, urban planning, etc.

We all know image segmentation is color coding each pixel of the image into either one of the training classes. Satellite image segmentation is same as image segmentation, in this we use landscape images taken from satellites and perform segmentation on them. Typical training classes include vegetation, land, buildings, roads, cars, water bodies, etc.

Many Convolution Neural Network (CNN) models have shown decent accuracy in satellite image segmentation. One of these models which are in highlight is the U-Net model. Though the U-Net model gives decent accuracy it still has some drawbacks like predicting classes that have very near distinguishable features, not able to predict precise boundaries, etc.

In addressing these drawbacks, we have performed satellite image segmentation using the Basic FPN + PointRend model from the Detectron2 library which has significantly rectified the above-mentioned drawbacks and showed 15% increase in accuracy when compared to the U-Net model on the validation dataset used.

In this blog, I will start with describing the objective of our experiment, the dataset we used, a clear explanation of FPN + PointRend model architecture, and then demonstrate predictions from both U-Net and Detectron 2 models for comparison.


The main objective of this task is to perform semantic segmentation on satellite images to segment each pixel of the image into either of the five classes considered which are greenery, soil, water, building, and utility. Constraints made are anything related to plants and trees like forest, fields, bushes, etc. are considered as single class greenery. Same for soil, water, building, and utility (roads, vehicles, parking lots, etc.) classes.

Data Preparation for Modeling

We have created 500 random RGB satellite images using Google Maps API for modeling. For segmentation tasks, we need to prepare annotated images in the format of RGB masked images with height and width same as the input image and each pixel value corresponds to the respective class color code (i.e greenery — [0,255,0], soil — [255,255,0], water — [0,0,255], buildings — [255,0,0], utility — [255,0,255]). For the annotation process, we choose labelme tool. Additionally, we have performed image augmentations like horizontal flip, random crop, brightness alterations on images to let model robustly learn the features. After annotations are done, we made train and validation split to the dataset in ratio 90:10. Below is a sample image from the training dataset and the corresponding RGB masked image.

Fig 1: Sample image with corresponding annotated RGB mask from the training dataset

Model understanding

For modeling, we have used the Basic FPN segmentation model + PointRend model from Facebook’s Detectron2 library. Now let us understand the architecture of both models.

Basic FPN Model

FPN (Feature Pyramid Network) mainly consists of two parts encoder and decoder. Image is processed into final output by passing through encoder first and then through the decoder and finally through a segmentation head for generating pixel-wise class probabilities. In encoder bottom-up approach is performed using ResNet encoder and in decoder top-down approach is performed using properly structured CNN network.

Fig 2: Feature Pyramid Network (FPN) mode process flow (Image Source [1])

In the bottom-up approach, the RGB image is passed as input, and then it is processed through all convolution layers. After passing through each layer the output of that particular layer is sent as input to the next layer as well as input to the corresponding convolution layer in the top-down path as seen in fig 2. In the bottom-up approach, image resolution is reduced by 1/4th the input resolution of that layer as we go up, therefore, performing downsampling on the input image.

In the top-down path for each layer, input comes from the above layer as well as from the corresponding bottom-up path layer as seen in fig 2. These two inputs are merged and then sent to the layer for processing. Before merging to equate the channels of both input vectors, input from the bottom-up path is passed through 1*1 convolution layer which results in an output of 256 channels, and the input from the above top-down layer is upsampled 2 times using the nearest neighbor’s interpolation method.

Then both the vectors are added and sent as input to the top-down layer. The output of the top-down layer is passed 2 times successively through 3*3 convolution layer which results in a feature pyramid with 128 channels. This process is continued till the last layer in the top-down path. Therefore, the output of each layer in the top-down path is a feature pyramid.

Each feature map is upsampled such that its resulting resolution is same as 1/4th of the input RGB image. Once upsampling is done there are added up and sent as input to the segmentation head where 3*3 convolution, batch normalization, and ReLU activation is performed. To reduce the no. of channels in output to the same as no. of classes we apply 1*1 convolution. Then spatial dropout and bi-linear interpolation upsampling are performed to get the prediction vector which has the resolution same as the input image.

Technically in the FPN network, the segmentation predictions are performed on a feature map that has a resolution of 1/4th of the input image. Due to this, we must compromise on the accuracy of boundary predictions. To address this issue PointRend model is used.

PointRend Model

The basic idea of the PointRend model is to see segmentation tasks as computer graphics rendering. Same as in rendering where pixels with high variance are refined by subdivision and adaptive sampling techniques, the PointRend model also considers the most uncertain pixels in semantic segmentation output, upsamples7t them, and makes point-wise predictions which result in more refined predictions. The PointRend model performs two main tasks to generate final predictions. These tasks are,

· Points selection — how uncertain points are selected during inference and training

· Point-wise predictions — how predictions are made for these selected uncertain points

Points Selection Strategy

During inference random points are selected where the probabilities in the coarse prediction output (prediction vector which has a resolution equal to 1/4th input image) from the FPN model have class probabilities near to 1/no. of classes, i.e., 0.2 in our case as we have 5 classes. But during training instead of selecting points only based on probabilities first, it selects kN random points from a uniform distribution. Then selects βN most uncertain points (points with low probabilities) from these kN points. Finally remaining (1 — β)N are sampled from a uniform distribution. For the segmentation task during training k=3 and β=0.75 have shown good results. See fig 3 for more details on point selection strategy during training.

Fig 3: Point selection strategy demonstration (Image source [2])

Point-Wise Predictions

Point-wise predictions are made by combining two feature vectors

· Fine-grained features — at each selected point, a feature vector is extracted from the CNN feature maps. The feature vector can be extracted from a single feature map of res2 or multiple feature maps, e.g., res2 to res5 or feature pyramids

· Coarse prediction features — feature maps are usually generated at low resolutions due to this fine feature information is lost. For this instead of relying completely on feature maps course prediction output from FPN is also used in extracted feature vector at selected points

The combined feature vector is passed through MLP (multi-layer perceptron) head to get predictions. MLP has a weights vector for each point, and these get updated during training by calculating loss similar to the FPN model which is categorical cross-entropy.

Combined Model (FPN + PointRend) Flow

Now that we understood the main tasks of the PointRend model let us understand the flow of the complete task.

First, the input image is sent to the CNN network (in our case FPN model) to get coarse prediction output (in our case vector of 1/4th resolution of the input image with 5 channels). This coarse prediction vector is sent as input to the PointRend model where it is upsampled 2* times using bilinear interpolation and N uncertain points are generated using the PointRend point selection strategy.

Then at these points, new predictions are made using point-wise prediction strategy with MLP head (multi-layer perceptron) and this process is continued till we reach desired output resolution. Suppose if course prediction output resolution is 7*7 and desired output resolution is 224*224 the PointRend upsampling is done 5 times. In our case input resolution is 1/4th of desired output resolution therefore PointRend upsampling is performed 2 times. Refer to fig 4 and 5 for better understanding the flow

Fig 4: PointRend model process flow (Image source [2])
Fig 5: PointRend model upsampling and point-wise prediction demo for 4*4 course prediction vector (Image source [2])


For model training, we have used Facebook’s Detectron2 library. The training was done using Nvidia Titan XP GPU with 12GB VRAM and performed for 1 lakh steps with an initial learning rate of 0.00025. The best validation IoU was obtained at the 30000th step. The accuracy of Detectron2 FPN + PointRend outperformed the UNet model for all classes. Below are some of the predictions from both models. As you can see Detectron 2 model was able to distinguish features of greenery and water class when U-Net failed in almost all cases. Even boundary predictions of the Detectron2 model are far better than U-Net’s.

Fig 6: Sample predictions from UNet and Detectron2 model. Per image left is the prediction from UNet model, the middle is original RGB image and right is the prediction from Detectron2 model


In this blog, we have understood how Detectron 2 FPN + PointRend model performs segmentation on the input image. PointRend model can be applied as an extension to any image segmentation tasks for getting better predictions at class boundaries. As further steps to improve accuracy, we can increase the training dataset, do augmentations on images, play with hyperparameters like learning rate, decay, thresholds, etc.

Stay tunned for a sequel blog in which I would be talking on the code implementation of Detectron2 Basic FPN + PointRend segmentation model.

The above article is authored by Akasapu Hemanthika, senior business analyst at Affine

Follow us on LinkedIn & Medium to get regular updates!


[1] Feature Pyramid Network for Multi-Class Land Segmentation

[2] PointRend: Image Segmentation as Rendering




Affine is a provider of analytics solutions, working with global organizations solving their strategic and day to day business problems